1. (15 points) Let $A, B \in C^{m \times m}$ be arbitrary matrices. Show that

$$
\|A B\|_{F} \leq\|A\|_{2}\|B\|_{F}
$$

where $\|\cdot\|_{2}$ and $\|\cdot\|_{F}$ denote the 2-norm and Frobenius norm, respectively.
2. (15 points) Fix $0<\varepsilon<1$ and suppose that $A \in R^{m \times m}$ is symmetric and nonsingular. Show that if $\|A-I\|_{F} \geq \varepsilon$, then $\left\|A^{-1}-I\right\|_{F} \geq \frac{\varepsilon}{2}$, where $\|\cdot\|_{F}$ denotes the Frobenius norm.
3. (10 points) Prove that the determinant of a Householder reflector is negative one.
4. (15 points) Let $\varepsilon>0$ be given, $k \ll \min (m, n), A \in R^{m \times n}, C \in R^{m \times k}$, and $B \in R^{k \times n}$. Assume that

$$
\|A-C B\| \leq \epsilon
$$

where $\|\cdot\|$ denotes the matrix 2 -norm, and B and C have rank k. Further suppose that A is not available, and only B and C are available. Without forming the product of C and B, design an efficient algorithm to compute an approximate reduced QR of A so that the following holds,

$$
\|A-Q R\| \leq \varepsilon
$$

where Q is an orthonormal matrix and R is upper triangular.
5. (15 points) Show that if $A \in \mathcal{R}^{n \times n}$ is symmetric, then for $k=1$ to n,

$$
\lambda_{k}(A)=\max _{\operatorname{dim}(S)=k} \min _{\mathbf{0} \neq \mathbf{y} \in S} \frac{\mathbf{y}^{T} A \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}}
$$

where S is a subspace of \mathcal{R}^{n}, and $\lambda_{k}(A)$ designates the k th largest eigenvalue of A so that these eigenvalues are ordered,

$$
\lambda_{n}(A) \leq \cdots \leq \lambda_{2}(A) \leq \lambda_{1}(A)
$$

6. Let $A \in \mathcal{R}^{m \times n}, \operatorname{rank}(A)=r$, and $\mathbf{b} \in \mathcal{R}^{m}$, and consider the system $A \mathbf{x}=\mathbf{b}$ with unknown $\mathbf{x} \in \mathcal{R}^{n}$. Making no assumption about the relative sizes of n and m, we formulate the following least-squares problem:
of all the $\boldsymbol{x} \in \mathcal{R}^{n}$ that minimizes $\|\boldsymbol{b}-A \boldsymbol{x}\|_{2}$, find the one for which $\|\boldsymbol{x}\|_{2}$ is minimized.
(a) (5 points) Show that the set Γ of all minimizers of the least-squares function is a closed convex set:

$$
\Gamma=\left\{\mathbf{x} \in \mathcal{R}^{n}:\|A \mathbf{x}-\mathbf{b}\|_{2}=\min _{\mathbf{v} \in \mathcal{R}^{n}}\|A \mathbf{v}-\mathbf{b}\|_{2}\right\}
$$

(b) (5 points) Show that the minimum-norm element in Γ is unique.
(c) (5 points) Show that the minimum norm solution is $\mathbf{x}=A^{+} \mathbf{b}=V \Sigma^{+} U^{*} \mathbf{b}$, where $A=U \Sigma V^{*}$, and Σ^{+}is the pseudo-inverse of Σ.
7. Consider the following linear system,

$$
\begin{equation*}
A \mathbf{x}=F, \tag{1}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{cccccc}
2 & -1 & 0 & \cdots & \cdots & 0 \\
-1 & 2 & -1 & 0 & \cdots & 0 \\
0 & -1 & 2 & -1 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\cdots & \cdots & 0 & -1 & 2 & -1 \\
\cdots & \cdots & \cdots & 0 & -1 & 2
\end{array}\right]
$$

(a) (5 points) Prove that the $n \times n$ tridiagonal matrix A is symmetric, positive definite (SPD).
(b) (5 points) Let B be a tridiagonal SPD matrix in the form of the matrix A. Prove that the Cholesky factor L of B has nonzero entries only along the main diagonal and the sub-diagonal lines, where $B=L L^{t}$. Give the formula for L.
(c) (5 points) Design an $O(n)$ algorithm to solve the linear system $A \mathrm{x}=F$.

