1. (15 points) Let $A,B\in C^{m\times m}$ be arbitrary matrices. Show that

 $||AB||_F \le ||A||_2 ||B||_F,$

where $\|\cdot\|_2$ and $\|\cdot\|_F$ denote the 2-norm and Frobenius norm, respectively.

2. (15 points) Fix $0 < \varepsilon < 1$ and suppose that $A \in \mathbb{R}^{m \times m}$ is symmetric and nonsingular. Show that if $||A - I||_F \ge \varepsilon$, then $||A^{-1} - I||_F \ge \frac{\varepsilon}{2}$, where $|| \cdot ||_F$ denotes the Frobenius norm. 3. (10 points) Prove that the determinant of a Householder reflector is negative one.

4. (15 points) Let $\varepsilon > 0$ be given, $k << \min(m, n)$, $A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{m \times k}$, and $B \in \mathbb{R}^{k \times n}$. Assume that

$$\|A - CB\| \le \epsilon,$$

where $\|\cdot\|$ denotes the matrix 2-norm, and *B* and *C* have rank *k*. Further suppose that *A* is not available, and only *B* and *C* are available. Without forming the product of *C* and *B*, design an efficient algorithm to compute an approximate reduced QR of *A* so that the following holds,

$$\|A - QR\| \le \varepsilon,$$

where Q is an orthonormal matrix and R is upper triangular.

5. (15 points) Show that if $A \in \mathcal{R}^{n \times n}$ is symmetric, then for k = 1 to n,

$$\lambda_k(A) = \max_{\dim(S)=k} \min_{\mathbf{0} \neq \mathbf{y} \in S} \frac{\mathbf{y}^T A \mathbf{y}}{\mathbf{y}^T \mathbf{y}},$$

where S is a subspace of \mathcal{R}^n , and $\lambda_k(A)$ designates the kth largest eigenvalue of A so that these eigenvalues are ordered,

$$\lambda_n(A) \leq \cdots \leq \lambda_2(A) \leq \lambda_1(A).$$

6. Let $A \in \mathcal{R}^{m \times n}$, rank(A) = r, and $\mathbf{b} \in \mathcal{R}^m$, and consider the system $A\mathbf{x} = \mathbf{b}$ with unknown $\mathbf{x} \in \mathcal{R}^n$. Making no assumption about the relative sizes of n and m, we formulate the following least-squares problem:

of all the $\mathbf{x} \in \mathbb{R}^n$ that minimizes $\|\mathbf{b} - A\mathbf{x}\|_2$, find the one for which $\|\mathbf{x}\|_2$ is minimized.

(a) (5 points) Show that the set Γ of all minimizers of the least-squares function is a closed convex set:

$$\Gamma = \{ \mathbf{x} \in \mathcal{R}^n : \|A\mathbf{x} - \mathbf{b}\|_2 = \min_{\mathbf{v} \in \mathcal{R}^n} \|A\mathbf{v} - \mathbf{b}\|_2 \}.$$

- (b) (5 points) Show that the minimum-norm element in Γ is unique.
- (c) (5 points) Show that the minimum norm solution is $\mathbf{x} = A^+ \mathbf{b} = V \Sigma^+ U^* \mathbf{b}$, where $A = U \Sigma V^*$, and Σ^+ is the pseudo-inverse of Σ .

7. Consider the following linear system,

$$A\mathbf{x} = F,\tag{1}$$

where

$$A = \begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \cdots & \cdots & 0 & -1 & 2 & -1 \\ \cdots & \cdots & 0 & -1 & 2 \end{bmatrix}$$

- (a) (5 points) Prove that the $n \times n$ tridiagonal matrix A is symmetric, positive definite (SPD).
- (b) (5 points) Let B be a tridiagonal SPD matrix in the form of the matrix A. Prove that the Cholesky factor L of B has nonzero entries only along the main diagonal and the sub-diagonal lines, where $B = LL^t$. Give the formula for L.
- (c) (5 points) Design an O(n) algorithm to solve the linear system $A\mathbf{x} = F$.